Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 10(12)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36560483

RESUMO

BACKGROUND: There is an increasing number of liver injury cases resembling autoimmune hepatitis (AIH) following SARS-CoV-2 vaccination; however, an association has not yet been established. METHODS/MATERIALS: A literature review was performed to identify articles regarding the association of AIH with vaccination, emphasizing on SARS-CoV-2 vaccines, and the proposed mechanisms. We then performed a literature search for AIH-like cases following SARS-CoV-2 vaccination, and we evaluated the included cases for AIH diagnosis using simplified diagnostic criteria (SDC), and for vaccination causality using the Naranjo score for adverse drug reactions. RESULTS: We identified 51 AIH-like cases following SARS-CoV-2 vaccination. Forty cases (80%) were characterized as "probable", "at least probable", or "definite" for AIH diagnosis according to SDC. Forty cases (78.4%) were characterized as "probable", four (7.8%) as "possible", and three (5.8%) as "definite" for vaccine-related AIH according to the Naranjo score. CONCLUSION: SARS-CoV-2 vaccine-related AIH carries several phenotypes and, although most cases resolve, immunosuppressive therapy seems to be necessary. Early diagnosis is mandatory and should be considered in any patient with acute or chronic hepatitis after SARS-CoV-2 vaccination, especially in those with pre-existing liver disease.

2.
Artif Organs ; 36(4): 400-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22187937

RESUMO

We have previously shown that deferoxamine (DFO) infusion protected myocardium against reperfusion injury in patients undergoing open heart surgery, and reduced brain edema, intracranial pressure, and lung injury in pigs with acute hepatic ischemia (AHI). The purpose of this research was to study if DFO could attenuate sepsis inflammatory response syndrome (SIRS) and confer renoprotection in the same model of AHI in anesthetized pigs. Fourteen animals were randomly allocated to two groups. In the Group DFO (n=7), 150mg/kg of DFO dissolved in normal saline was continuously infused in animals undergoing hepatic devascularization and portacaval anastomosis. The control group (Group C, n=7) underwent the same surgical procedure and received the same volume of normal saline infusion. Animals were euthanized after 24h. Hematological, biochemical parameters, malondialdehyde (MDA), and cytokines (interleukin [IL]-1ß, IL-6, IL-8, IL-10, and tumor necrosis factor-α) were determined from sera obtained at baseline, at 12h, and after euthanasia. Hematoxylin-eosin and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling were used to evaluate necrosis and apoptosis, respectively, in kidney sections obtained after euthanasia. A rapid and substantial elevation (more than 100-fold) of serum IL-6 levels was observed in Group C reaching peak at the end of the experiment, associated with increased production of oxygen free radicals and lipid peroxidation (MDA 3.2±0.1nmol/mL at baseline and 5.5±0.9nmol/mL at the end of the experiment, P<0.05) and various manifestations of SIRS and multiple organ dysfunction (MOD), including elevation of high-sensitivity C-reactive protein, severe hypotension, leukocytosis, thrombocytopenia, hypoproteinemia, and increased serum levels of lactate dehydrogenase (fourfold), alkaline phosphatase (fourfold), alanine aminotransferase (14-fold), and ammonia (sevenfold). In sharp contrast, IL-6 production and lipid peroxidation were completely blocked in DFO-treated animals offering remarkable resistance to the development of SIRS and MOD. Profound proteinuria, strips of extensive necrosis of tubular epithelial cells, and occasional apoptotic tubular epithelial cells were already present in Group C, but not in Group DFO animals at the time of euthanasia. DFO infusion attenuated lipid peroxidation, blocked IL-6 production, and substantially diminished SIRS and MOD, including tubulointerstitial damage in pigs after acute ischemic hepatic failure. This finding shows that iron, IL-6, and lipid peroxidation are important participants in the pathophysiology of renal injury in the course of generalized inflammation and provides novel pathways of therapeutic interventions for renal protection.


Assuntos
Desferroxamina/uso terapêutico , Interleucina-6/imunologia , Isquemia/tratamento farmacológico , Rim/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Hepatopatias/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Doença Aguda , Injúria Renal Aguda/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Feminino , Isquemia/imunologia , Rim/imunologia , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Hepatopatias/imunologia , Distribuição Aleatória , Suínos , Síndrome de Resposta Inflamatória Sistêmica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...